Bases for Vector Spaces

Definition

A set of vectors $S = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n \}$ in a vector space V forms a **basis** for V if

- a. *S* is linearly independent.
- b. S spans V.

Examples

 \mathbb{R}^2 - Any two independent vectors can form a basis in \mathbb{R}^2 .

Standard Basis

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \bigg\}$$

 $\mathbb{R}^3\,$ - Any three independent vectors form a basis in $\mathbb{R}^3.$

Standard Basis

$$\left\{ \begin{array}{c} 1\\0\\0 \end{array}, \begin{array}{c} 0\\1\\0 \end{array}, \begin{array}{c} 0\\0\\1 \end{array} \right\}$$

 \mathbb{R}^n - Any *n* independent vectors form a basis in \mathbb{R}^n .

Standard Basis

•

$$\left\{ \begin{array}{cccc} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ n \times 1 \end{array}, \begin{array}{cccc} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ n \times 1 \end{array}, \begin{array}{ccccc} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ n \times 1 \end{array} \right\}$$

Definition

A basis $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n \}$ is called **orthogonal** if every pair of vectors is orthogonal (perpendicular). In other words, their dot product must be zero.

$$\vec{v}_i \ \vec{v}_j = 0 \qquad (i \neq j)$$

The following set of vectors are orthogonal.

$$\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}, \begin{pmatrix} -6 \\ 0 \\ 2 \end{pmatrix} \right\}$$

Definition

A basis $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n \}$ is called **orthonormal** if the basis is orthogonal and consists of **unit** vectors.

$$\vec{v}_i \cdot \vec{v}_j = 0$$
 $(i \neq j)$ and $\|\vec{v}_i\|_2 = 1$ $(i = 1, 2, ..., n)$

Examples

• The vectors $\left\{ \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right\}$ form an orthogonal basis (but not orthonormal).

- The standard basis in \mathbb{R}^n is orthonormal.
- The vectors $\left\{ \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\1 \end{pmatrix} \right\}$ form a basis for \mathbb{R}^3 which is neither orthogonal

nor orthonormal.

Homework

1. Do vectors
$$\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$
, $\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$ form a basis for \mathbb{R}^4 ? Explain.
2. Do vectors $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\3 \end{pmatrix}$ form a basis for \mathbb{R}^3 ? Explain.

3. Give an example of an orthogonal basis in \mathbb{R}^2 other than the standard basis.

4. Give an example of an orthonormal basis in \mathbb{R}^2 other than the standard basis.

5. Give an example of an orthogonal basis in \mathbb{R}^3 other than the standard basis.

6. Give an example of an orthonormal basis in \mathbb{R}^3 other than the standard basis.

Coordinate Systems

Theorem 5

Let the vectors $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n \}$ be a basis for a vector space V. Then for each vector \vec{x} in V there exists **unique** constants $c_1, c_2, c_3, \dots, c_n$ such that

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{x}$$

Proof

Since the vectors form a basis, they span V and there are constants $c_1, c_2, c_3, ..., c_n$ such that $c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n = \vec{x}$. Assume that these constants are not unique, and that there are also constants $b_1, b_2, b_3, ..., b_n$ such that $b_1\vec{v}_1 + b_2\vec{v}_2 + \cdots + b_n\vec{v}_n = \vec{x}$. If we subtract one representation from the other, we get

$$(b_1 - c_1)\vec{v}_1 + (b_2 - c_2)\vec{v}_2 + \dots + (b_n - c_n)\vec{v}_n = \vec{0}$$

Since $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n \}$ are independent, all the constants $(b_1 - c_1), (b_2 - c_2) \dots$ $(b_n - c_n)$ must be zero, and therefore, $b_1 = c_1, b_2 = c_2, \dots, b_n = c_n$.

Definition

Suppose $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n \}$ is a basis for a vector space V and \vec{x} is in V. The coordinates of \vec{x} relative to the basis $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n \}$ are the constants (weights) c_1, c_2, \dots, c_n such that

$$\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_n \vec{v_n}$$

Examples

• In \mathbb{R}^n , when working with the standard basis

since
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
, then $c_1 = x_1, \dots, c_n = x_n$.

However, when working with an arbitrary basis, coordinates change.

• Find the coordinates of a the vector $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ with respect to the basis $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.

We are looking for constants c_1 and c_2 such that

 $c_{1}\begin{pmatrix}1\\1\end{pmatrix}+c_{2}\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}1\\3\end{pmatrix} \quad \text{(sounds familiar?)}$ $\begin{bmatrix}1&1&1\\1&-1&3\end{bmatrix} \rightarrow \begin{bmatrix}1&1&1\\0&-2&2\end{bmatrix} \rightarrow \begin{bmatrix}1&1&1\\0&1&-1\end{bmatrix} \rightarrow \begin{bmatrix}1&0&2\\0&1&-1\end{bmatrix}$ Solution: $\begin{pmatrix}c_{1}\\c_{2}\end{pmatrix}=\begin{pmatrix}2\\-1\end{pmatrix}$, which are the coordinates of $\begin{pmatrix}1\\3\end{pmatrix}$ w.r.t. $\left\{\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}1\\-1\end{pmatrix}\right\}$.

<u>Note</u>: If we want to assign coordinates to all points in \mathbb{R}^2 w.r.t. $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$, we

must solve the following system.

$$c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Example 2

Find the coordinates of an arbitrary vector
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 w.r.t. the basis $\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \right\}$.

The coordinates can be obtained by solving the system

$$\begin{aligned} & c_1 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \\ \\ \begin{bmatrix} 1 & 1 & -1 & x \\ 0 & 1 & -1 & x \\ 0 & 1 & -1 & \frac{x+y}{2} \\ 0 & 0 & -1 & z \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 & x \\ 0 & 2 & -2 & x+y \\ 0 & 0 & -1 & z \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 & x \\ 0 & 1 & -1 & \frac{x+y}{2} \\ 0 & 0 & -1 & z \end{bmatrix} \rightarrow \\ \begin{bmatrix} 1 & 0 & 0 & \frac{x-y}{2} \\ 0 & 1 & 0 & \frac{x-y}{2} \\ 0 & 1 & 0 & \frac{x+y-2z}{2} \\ 0 & 0 & 1 & -z \end{bmatrix} , \quad \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} \frac{x-y}{2} \\ \frac{x+y-2z}{2} \\ -z \end{pmatrix} \end{aligned}$$

Homework

1. Find the coordinates of the vector
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 w.r.t. the basis $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\2\\7 \end{pmatrix} \right\}$.
2. Find the coordinates of the vector $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ w.r.t. the basis $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 0\\2\\2 \end{pmatrix} \right\}$.